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Abstract. For a very general class of probability distributions in disordered Ising spin systems,
in the thermodynamical limit, we prove the following property for overlaps among real replicas.
Consider the overlaps amongs replicas. Add one replicas+1. Then, the overlapqa,s+1 between
one of the firsts replicas, let us saya, and the addeds + 1 is either independent of the former
ones, or it is identical to one of the overlapsqab, with b running among the firsts replicas,
excludinga. Each of these cases has equal probability 1/s.

1. Introduction

In this paper we focus on general properties of overlap distributions in statistical mechanics
models made up of Ising spins (see later for definitions). Historically, these properties have
been considered for the first time in spin-glass models [1], so that for convenience we take
them as a starting point in our discussion, and generalize our results later.

The problem of finding the phase structure of short-ranged models for spin glasses has
proved extremely difficult, and yet remains unsolved. An important result, though, has been
achieved with Parisi’s solution of the Sherrrington–Kirkpatrick (SK) model (a mean-field
approximation to more realistic ones), whose Hamiltonian we recall:

HJ {σ } = − 1√
N

∑
(ik)

Jikσiσk. (1)

Theσi (i = 1, . . . , N) are Ising spins and theJik (collectively notedJ ) are random variables
drawn from independent unit normal distributions, with the constraintsJik = Jki andJii = 0.
The sum runs over all couples(ik), with 16 i < k 6 N . The Parisi solution for this model
implies a countable infinity of pure states (below the critical temperature) that turn out to
be organized in a very remarkable geometric structure, of the type called ultrametric [1].

This structure is clearly seen by introducing a replicated system, made up of non-
interacting, identical copies (replicas) of an SK system. These are usually called ‘real’
replicas to distinguish them from the replicas used in the replica method, which requires a
limit to zero replicas. In this way the Boltzmann state of the replicated system is simply
the following product state

�J (·) = (ω(1)J ⊗ · · · ⊗ ω(s)J )(·) (2)
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whereω(i)J is the state of replicai for a given realization of theJ ’s. We callσai the variables
associated to replicaa, on whichω(a)J acts. Notice that all replicas have the same noiseJ .
We will write E(·) the average over the coupling distribution.

The overlap between the spin configurations of different replicasa andb is defined as

Qab = 1

N

N∑
i=1

σai σ
b
i . (3)

Notice thatQaa would be trivially equal to one. We now introduce the random variables
qab (also referred to as overlaps) by requiring that for any smooth functionFs(Q) of the
configuration overlaps amongs replicas (summarized byQ in the notation) the following
equality holds:

E(�J (Fs(Q))) = 〈Fs(q)〉 (4)

where〈·〉 is by definition the average with respect to the distribution of theq ’s. According
to (4), this implies both Boltzmann andJ averages. Although the replicas are independent
so long as the thermal average is considered, they are coupled by theJ average, for they all
share the same realization of the couplings. In fact the Parisi solution gives the following
joint distribution for the overlapsq12 andq13 among three replicas, labelled 1, 2, and 3,

ρ12,13(q12, q13) = 1
2ρ(q12)ρ(q13)+ 1

2ρ(q12)δ(q12− q13) (5)

where ρ(·) is the probability distribution of the overlap between any two replicas.
Formula (5) says that the two overlaps are independent with probability one half, and
identical with the same probability. Even when we consider two overlaps between two
distinct couples of replicas, the correlation remains strong:

ρ12,34(q12, q34) = 2
3ρ(q12)ρ(q34)+ 1

3ρ(q12)δ(q12− q34). (6)

The difference with formula (5) is just that the probability of the two overlaps being identical
has reduced to one-third, and accordingly the probability of their being independent is two-
thirds.

In general, the underling ultrametric structure allows all joint probability distributions
of the overlaps among replicas to be expressed as functions of the distributionρ(·) of a
single overlap. We refer to the literature [1] for a thorough exposition of this geometrical
structure, but here we want to stress the well known fact that this situation requiresρJ (·),
i.e. the overlap distribution at fixedJ , to be non-self-averaging with respect toJ , that is to
depend on the realization of the couplings even after the thermodynamical limit has been
taken. In fact, sinceρ(q) = E(ρJ (Q)),
ρ12,34(q12, q34) = E(ρJ 12,34(Q12,Q34)) = E(ρJ (Q12)ρJ (Q34)) 6= E(ρJ (Q12))E(ρJ (Q34))

(7)

i.e. ρJ (·) fluctuates withJ .
While a complete mathematical proof of the Parisi solution is still lacking, the latter is

widely believed to be correct due to extensive computer simulations [2, 3] and mathematical
arguments, see [4–7] and references therein. On the other hand, doubts about the relevance
of the ultrametric structure to realistic models have been raised in the last years, and in
particular the existence of non-self-averaging quantities in the thermodynamical limit has
been questioned [8], see however [9]. In our opinion, since Parisi’s method seems very
difficult to generalize beyond the mean-field approximation, a deeper understanding of the
ultrametric geometry in the simpler SK model is a necessary first step in order to consider
its relevance to short-ranged models. In this paper, following the ideas outlined in [4, 10],
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we are able to prove that some features of the ultrametric geometry arise naturally in the SK
model as a consequence of the self-averaging of thermodynamical quantities, for example
the internal energy.

Moreover, by a careful limiting procedure we establish the same results for short-ranged
models. We do not address the very difficult question of the number of phases in the glassy
regime of spin-glass models, but show that, whatever this number is, the overlap distributions
(as previously defined) have some ultrametric features.

In section 2 we recall some known results, and consider the consequences for the
overlap distributions in the SK model. In section 3 we generalize these arguments in order
to construct a well-defined set of such distributions, independently from Parisi’s work and
in agreement with it. Section 4 is devoted to the extension of these results to short-ranged
models. A short concluding section summarizes our arguments.

2. Consequences of self-averaging

For the sake of convenience let us define

AJ {σ } def= − 1

N
Hj {σ }. (8)

We start our arguments by recalling a known theorem, stating the self-averaging ofAJ {σ }
with respect to the〈·〉 average in the thermodynamical limit [4, 10]:

lim
N→∞

(〈AJ {σ }2〉 − 〈AJ {σ }2) = 0. (9)

By following [4, 10], let us sketch the proof of (9). Let us write the〈·〉 mean-square
deviation in (9) as a sum of two terms in the form

〈AJ {σ }2〉 − 〈AJ {σ }〉2 = EωJ (AJ {σ }2)− (EωJ (AJ {σ }))2
= E(ωJ (AJ {σ }2)− ω2

J (AJ {σ }))+ (Eω2
J (AJ {σ })− (EωJ (AJ {σ }))2). (10)

The second term is theE mean-square deviation of the internal energy. Since Pastur and
Scherbina [5] have proven the self-averaging of the free energy, standard thermodynamical
reasoning based on convexity also gives self-averaging for the internal energy [4, 11]. This
may fail, in principle, only for a zero measure set of values forβ. Due to the lack of
complete control on the thermodynamical limit, it is also necessary to exploit subsequences,
as explained in [4]. Therefore, the second term in (10) goes to zero asN →∞. The first
term is equal toN−1∂βEωJ (AJ {σ }). SinceEωJ (AJ {σ }) is finite, theN−1 term also forces
the first term in (10) to go to zero asN →∞, with the possible exclusion of a set of zero
measure of values forβ. Therefore, we have established (9). This, in turn, implies that

lim
N→∞

(〈AJ {σa}Fs(q)〉 − 〈AJ {σ }〉〈Fs(q)〉) = 0 (11)

where byAJ {σa} we intend thatAJ {σ } is calculated on replicaa, which we take to be one
of the replicas inFs(q). This result is achieved from (9) via a simple Schwarz inequality:

lim
N→∞

(〈AJ {σa}Fs(q)〉 − 〈AJ {σ }〉〈Fs(q)〉)2 = lim
N→∞
〈(AJ {σa} − 〈AJ {σ }〉)Fs(q)〉2

6 lim
N→∞
〈(AJ {σa} − 〈AJ {σ }〉)〉2〈Fs(q)〉2 = 0 (12)

by virtue of (9). We now express (11) in terms of overlaps, using the fact that integration by
parts gives〈Jikf (J )〉 = 〈∂Jik f (J )〉, for a generic functionf (·), since theJ ’s are normally
distributed. From this formula we get

E(∂Jik�J (Fs(Q))) =
1√
N

s∑
a=1

E(�J (Fs(Q)σ ai σ
a
k )−�J (Fs(Q))�J (σ ai σ ak )) (13)
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by explicit calculation. Applying these formulae, the first term in (11) is written as

〈AJ {σa}Fs(Q)〉 = β

N2

∑
(ik)

E
(
�J

(
σai σ

a
k Fs(Q)

s∑
b=1

σbi σ
b
k

)

−�J (σ ai σ ak Fs(Q))�J
( s∑
b=1

σbi σ
b
k

))
= β

2

〈( s∑
b=1

q2
ab − sq2

a,s+1

)
Fs(q)

〉
(14)

while the second one is simply

〈AJ {σ }〉〈Fs(q)〉 = β

2
(1− 〈q2〉)〈Fs(q)〉. (15)

Using (14) and (15) in (11) we get

lim
N→∞

〈
Fs(q)

( s∑
b=1

q2
ab − sq2

a,s+1− (1− 〈q2〉)
)〉
= 0. (16)

SinceFs(·) is a generic function, we can introduce conditional expectationsE(· | As) with
respect to the algebraAs generated by the overlaps amongs replicas, and write

E(q2
a,s+1 | As) =

1

s
〈q2〉 + 1

s

∑
b 6=a

q2
ab (17)

where the unity in (16) has cancelled with the terma = b in the sum. We assume that (17),
as other formulae obtained in the following, holds exactly only in the thermodynamical
limit.

Using (17) we can write equalities relating averages of squared overlaps, the simplest
of which is

〈q2
12q

2
13〉 = 1

2〈q4〉 + 1
2〈q2〉2 (18)

in full agreement with the Parisi probability distribution (5).
Moreover, from (17) we can also easily derive an expression for the conditioned

expectationE(q2
s+1,s+2 | As), starting by writing (17) in the case ofs + 2 replicas and

a = s + 1:

E(q2
s+1,s+2 | As+1) = 1

s + 1
〈q2〉 + 1

s + 1

s∑
b=1

q2
b,s+1. (19)

Keeping in mind thatE(E(· | As+1) | As) = E(· | As), we have

E(q2
s+1,s+2 | As) =

1

s + 1
〈q2〉 + 1

s + 1

s∑
b=1

E(q2
b,s+1 | As)

= 1

s + 1
〈q2〉 + 1

s + 1

(
〈q2〉 + 1

s

s∑
b=1

1,s∑
c 6=b

q2
bc

)
(20)

that is

E(q2
s+1,s+2 | As) =

2

s + 1
〈q2〉 + 2

s(s + 1)

∑
a<b6s

q2
ab. (21)

From (21) we can derive other known ultrametric equalities, for example

〈q2
12q

2
34〉 = 1

3〈q4
12〉 + 2

3〈q2
12〉2 (22)

again in agreement with (6) obtained from Parisi’s solution. In the following section we
generalize formulae (17) and (21) to arbitrary (integer) powers of overlaps.
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3. Auxiliary interactions and overlap probability distributions

Let us consider the SK model in the presence of an external field

AJ,J ′ {σ } def= AJ {σ } + λ

N

N∑
i=1

J ′i σi
def= AJ {σ } + λIJ ′ {σ } (23)

where the random variablesJ ′i are independent of theJik and have the same distribution.
We assume thatλ is ‘small’, since in the end we will take it to zero to recover the free SK
model.

Theorem (11) can be generalized to the present case, since it only relies on self-averaging
of the internal energy

lim
N→∞

(〈AJ,J ′ {σa}Fs(q)〉 − 〈AJ,J ′ {σ }〉〈Fs(q)〉) = 0 (24)

where now〈·〉 implies averaging over theJ ′ variables as well. Using the same procedure as
in the preceding section, but now integrating and deriving with respect to theJ ′ variables,
we get the completely analogous formula

E(qa,s+1 | As) = 1

s
〈q〉 + 1

s

∑
b 6=a

qab (25)

which continues to hold whenλ is taken to zero (after having taken the thermodynamical
limit). The only difference between this formula and (17) is that here overlaps appear at
the first power.

It is now clear that we can consider auxiliary interactions of the general form

λrIr{σ } def= λr

N(r+1)/2

∑
(i1...ir )

J ′i1,...,ir σi1 . . . σir (26)

the former case beingr = 1. So we end up with the formula

E(qra,s+1 | As) =
1

s
〈qr〉 + 1

s

∑
b 6=a

qrab (27)

valid for the free SK model whenλr → 0. A similar formula is valid forE(qrs+1,s+2 | As)
as a generalization of (21). We have thus obtained the main result of this paper.

Theorem. Given the overlaps amongs real replicas, the overlap between one of these and
an additional replica is either independent of the former overlaps or it is identical to one of
them, each of these cases having probability 1/s:

ρa,s+1(qa,s+1 | As) = 1

s
ρ(qa,s+1)+ 1

s

∑
b 6=a

δ(qa,s+1− qab) (28)

whereρa,s+1(· | As) is the conditioned distribution ofqa,s+1 given the overlaps inAs .

Proof. The theorem is proved by (27) and the fact that the overlaps are bounded.�

Corollary. The distribution ofqs+1,s+2 conditioned to the overlaps inAs is given by

ρs+1,s+2(qs+1,s+2 | As) = 2

s + 1
ρ(qs+1,s+2)+ 2

s(s + 1)

∑
a<b6s

δ(qs+1,s+2− qab). (29)

Proof. The proof is the same as that leading from (17) to (21). �
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We shall comment on theorems (28) and (29) in the concluding section. Notice that
the general relations found in the previous theorem also imply the constraints on overlap
distributions found in [12].

4. Extension to short-ranged models

While we have been dealing with the SK model so far, it is easy to establish the same results
for short-ranged models by carefully taking the thermodynamical limit. Suppose that a given
model hasM pure states at a given temperature, which we labelωi(·), i = 1, . . . ,M. The
value ofM is immaterial for our argument (but see the concluding section). Each of these
states can be reached in the thermodynamical limit by means of a suitable fieldhi , which
for disordered systems such as spin-glasses is presently unknown.

Let us now noteH{σ } the Hamiltonian of the considered short-ranged model, and let us
add to it both the fieldhi and a perturbation of the SK type (26) (now written asHSK{σ }),
in such a way that the Hamiltonian becomes

H{σ } + hi + λHSK{σ } (30)

whereλ is a ‘small’ parameter.
If, after the thermodynamical limit,λ is taken to zero, the system is left in the state

ωi(·) selected by the fieldhi , if the SK interaction has been kept ‘small enough’ throughout
the whole process, and provided that the considered model is not unstable with respect to
the perturbationHSK{σ }.

While λ is different from zero, the SK interaction enables us to perform the same
calculations as shown in the preceding sections, and to establish the same relations (28) and
(29) relative to the considered states of the system.

In general, we can state that the basic property of the overlaps, given by theorem (28),
holds for all states that can be reached by adding a small spin-glass interaction of the type
(26) to the original interaction, by taking the infinite volume limit, and then by removing
the added spin-glass fields.

5. Concluding remarks and outlook

In the preceding sections we have seen how an analysis of fluctuations has contributed a
deeper understanding of the structure of the SK model, and how the same arguments can be
extended to general models in statistical mechanics. Theorem (28) is a strong constraint that
all overlap probability distributions have to satisfy, but it is not the same as ultrametricity.
It appears instead to be the same as the hypothesis of ‘replica equivalence’ in the framework
of the replica method. As Parisi has shown [13], this hypothesis enables one to express all
joint overlap distributions in terms of only those that refer to acomplete setof overlaps
among each given numbers of replicas (the simplest case beyondρ(·) beingρ12,13,23(·, ·, ·)
for s = 3). Moreover, it can be shown that, under the hypothesis of replica equivalence, the
only ultrametric solution is the usual Parisi solution [13], and the same conclusion remains
true if one starts from (28) instead of replica equivalence.

The fact that theorems (28) and (29) hold for basically all statistical mechanics models
compels us to note that their consequences can be trivial, when a particular model is
considered. This happens, for example, in the high-temperature regime, when all overlaps
take a constant value.

As stated in the introduction, the question of what case applies to short-ranged spin-glass
models remains unanswered.
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